Loon Lake

Mike Pichla, Environmental Biologist- North Regional Manager - Gaylord PLM Lake & Land Management Corp. michaelp@plmcorp.net 800-382-4434 ext 2300

PLM Lake & Land Management Corp.

- North Regional Manager Gaylord, with PLM 10 years
- Bachelors of Science- Natural Resource Management and Biology
- PLM is a full service Lake Management Company serving Michigan for over 40 years
 - Consulting, Lake Management Planning, Education, Implementation, Special Assessment Districts
 - Surveying, Mapping, Water Quality, Fishery Assessments
 - Herbicide Applications, Harvesting, Fountains/Aeration, Biological Control etc.

Review of Aquatic Plant Management

- Goals of APM
- Benefits of Native Plant Diversity
- Impacts of Exotic, Invasive Aquatic Plants
 - Eurasian watermilfoil, Curlyleaf pondweed, Starry stonewort, Variable leaf milfoil
- Loon Lake Management Plan
 - Survey, Mapping, Treatments
- Lake Management Tools
- Prevention

Goals of Aquatic Plant Management

- Control Exotic, Invasive Species!
- Promote a Balanced and Diverse Native Plant Community
 - Improve Fisheries
 - Maintain Property and Recreational Values

Native Plants

- "Typically" do not cause recreational problems
- Fundamental component of aquatic ecosystems
- Perform important functions
 - Stabilizing sediments
 - Support aquatic insects
 - Maintaining Oxygen
 - Provide forage and refuge areas for fish

• When control is needed, harvesting or use of contact herbicides are best management options. EGLE Permits restrict treatment of native plants to developed shorelines.

Diverse, Native Plant Community

The goal of Aquatic Plant Control: A healthy & diverse plant community.

This is NOT the goal!

Impacts of Exotic Species

Eurasian Watermilfoil (EWM)

- Not native to North America
- Highly invasive, forms a canopy & monoculture
- Spreads from root system, seed, and fragmentation (cutting, raking increases spread)
- Over winters (lives under the ice).
- Outcompetes other native plants
- Negatively impacts fisheries
- A single plant can produce millions new plants in a single year!

EWM

CANOPY

Variable Leaf Milfoil

- Seven species of milfoil in this region that have similar characteristics
- Most of the "native" milfoils looks very similar and often referred to as "Northern" or "Native Milfoil"
- Spreads by fragmentation, similar to that of Eurasian watermilfoil
- Native to North America, not necessarily Michigan waters. Therefore, management approval from EGLE is VERY different than EWM.
- Considered invasive in most MI lakes. Found in other local lakes and across Northern Michigan, including Loon Lake.

Curly leaf pondweed

- Introduced to North America in 19th century
- Emerges early each spring, flowers and sets seed in the late spring and early summer, and then collapses by the first week in July.
 - There are, however, exceptions to this pattern regarding juvenile plants, part of this re-growth community can occasionally be found in the late summer or early autumn.
- Capable of over-wintering below ice cover
- Curly Leaf can be a severe nuisance during the early part of the peak recreational use season
- Early control of this species is recommended so that the plant is not allowed to produce large quantities of biomass that die naturally and decompose in early July when water temperatures and the potential for oxygen stress are high
- Serrated edge

Starry stonewort

- Rooted macro algae
 - Takes all nutrients from water column, not roots
- Originated in Europe
- First found in St. Clair River/ Detroit Area
- Can grow in 20' of water
- Preferred by Zebra Mussels
- Forms a dense mat
- Rated as one of the more detrimental species to infest our waterways

Starry stonewort

• Photo credit: Bre Grabill, PLM

Hydrilla

- PLM was contacted by EGLE, as part of their Rapid Response Plan for new exotic plants
- Ability to reproduce through fragmentation, stolons or rhizomes and tubers
- Quickly out-competes native plants and EWM
- Leaves of 3-native, Leaves of 4+ invasive

Phragmites

- Phragmites (common reed) is a wetland grass that ranges in height from 6 to 15 feet tall
- "Phrag" quickly becomes the dominant feature in aquatic ecosystems, aggressively invading shorelines, wetlands, and ditches.
- This plant creates dense "strands" walls of weeds crowding out beneficial native wetland vegetation and indigenous waterfowl habitats.
- Spreading by fragmentation and an extensive root system, Phragmites ultimately out-competes native plant life for sun, water and nutrients.
- Phragmites demands extensive control and is currently only controlled with chemical herbicide. Quick action can keep densities from taking over

Clean, Drain, Dry, Dispose

Virkon[™] AQUATIC

HELP

STOP

AQUATIC

Prevent The Spread!

STOP AQUATIC HITCHHIKERS!

Prevent the transport of nuisance species. Clean <u>all</u> recreational equipment. www.ProtectYourWaters.net **HITCHHIKERS!**

To avoid spreading aquatic invasive species

BEFORE launching ... BEFORE leaving:

- Remove aquatic plants and aquatic animals
- Drain lake or river water away from landing
- Dispose of unwanted live bait in the trash

It's the Law... Do not:

- Transport aquatic plants, zebra mussels, or other prohibited species on public roads
- Launch a watercraft or place a trailer in the water if it has aquatic plants, zebra mussels or other prohibited species attached
- Transport water from infested waters

Michigan Department of Natural Resources

Surveys

- AVAS Survey
 - EGLE approved survey technique,
 Document growth within every 300' shoreline
- Pre/post treatment surveys

Cover Code	Approximate Cover Range
а	1-2%
b	3-20%
С	21-60%
d	61-100%

	NO	Plant Name			
	1	Eurasian watermilfoil			
dia.	2	Curly leaf pondweed			
1000	3	Chara			
	4	Thinleaf pondweed			
	5	Flatstem pondweed			
	6	Robbins pondweed			
	7	Variable pondweed			
	8	White stem pondweed			
	9	Richardsons pondweed			
	10	Illinois pondweed			
	11	Large leaf pondweed			
	12	American pondweed			
	13	Floating leaf pondweed			
	14	Water stargrass			
	15	Wild celery			
	16	Sagittaria (submersed)			
	17	Northern watermilfoil			
	18	Green watermilfoil			
	19	Two-leaved watermilfo			
	20	Coonta			
	21	Elode			
	22	Bladderwo			
	23	Mini Bladderwo			
	24	Buttercup			
	25	Naiad			
	26	Brittle naiad			
	27	Sago Pondweed			
	30	Water Lily			
	31	Spatterdock			
_	32	Water shield			
e	33	Lemna minor			
	34	Greater duckweed			
	35	Watermeal			
	36	Arrowhead			
	37	Pickerelweed			
	38	Arrow arum			
	39				
	40	Bulrush			
]]	41				
	42	Swamp loosestrife			

Lake: Loon Lake

Standard Aquatic Vegetation Summary Sheet

AVAS MANNERS

- Changes based on year, surveyor, timing
- Important for tracking trends over time
- Approved survey method by EGLE
- AVAS surveys required as part of certain permits
- Data can be used to track species diversity, % cover by exotics, and changes in total cumulative plant coverage over time

—												COLA
		То	tal nu	mber	of					Sum of	Total	divided
				for es	ch					Columns	No of	by
		De	nsity i	Cated		Calculations			5-8	AV/AS	Col 10	
Code		Δ	B	C		Δ γ 1	B x 10	$C \times 40$	D y 80		1.01.0	00110
No	Plant Name	1	2	3	4	5	6	7	8	q	10	11
1	Eurasian watermiltoil	-	2	0		<u> </u>	Ŭ	, 0	<u> </u>		71	11
2	Curly leaf pondweed	ň	0	0	ň	0		- Ö	l õ		/1	
3	Chara	2	14	54	2	2	140	2160	160	2462	71	34.68
4	Thinleaf nondweed	2	4	4	0	2	40	160	100	202	71	2.85
5	Flatstem pondweed	1	16	3	Ŭ	- 1	160	120	Ŭ	281	/1	3.96
6	Robbins pondweed	0	0	0	0	0	0	0	0			
7	Variable pondweed	0	35	8	Ō	0	350	320	Ō	670	71	9.44
8	White stem pondweed	0	18	14	0	0	180	560	0	740	71	10.42
9	Richardsons pondweed	0	1	0	0	0	10	0	0	10	71	0.14
10	Illinois pondweed	0	0	0	0	0	0	0	0			
11	Large leaf pondweed	0	34	8	0	0	340	320	0	660	71	9.30
12	American pondweed	0	0	0	0	0	0	0	0			
13	Floating leaf pondweed	0	0	0	0	0	0	0	0			
14	Water stargrass	0	0	0	0	0	0	0	0			
15	Wild celery	2	28	23	1	2	280	920	80	1282	/1	18.06
16	Sagittaria (submersed)	0	0	0	0	0	0	0	0			
17	Northern watermilfoil	9	13	1	0	9	130	40	0	179	71	2.52
18	Rush	0	0	0	0	0	0	0	0			
19	Variable leaf watermilfoil	0	0	0	0	0	0	0	0			
20	Coontail	0	0	0	0	0	- 0	0	0			
21	Elodea	0	0	0	0	0	0	0	0			
22	Bladderwort	0	0	0	0	0	0	0	<u> </u>			
23		0	0	0	0	0	0	0	0			
24	Naiad	0	1	0	0	- 0	10	0		10	/1	0.14
25	Brittle paiad	- O	-	0	0	0	10	0	0	10	/1	0.14
20	Sado Pondweed	- ŭ	0	ŏ	ŏ	0	0	- O	- ŭ			
28	Starny Stonewort	1	2	ŏ	ŏ	1	20	ŏ	- ŏ	21	71	0.30
29	Cabomba	- Ô	- 6	ŏ	ŏ	- n	20	Ň	- ŏ	21	/1	0.50
30	Water Lilv	6	14	12	1	6	140	480	80	/06	/1	9,94
31	Spatterdock	Ō	0	1	0	0	0	40	0	40	71	0.56
32	Water shield	ō	Ō	ō	ō	Ō	Ō	0	ō			
33	Common Duckweed	0	0	0	0	0	0	0	0			
34	Greater duckweed	0	0	0	0	0	0	0	0			
35	Watermeal	0	0	0	0	0	0	0	0			
36	Arrowhead	0	0	2	0	0	0	80	0	80	71	1.13
37	Pickerelweed	0	0	0	0	0	0	0	0			
38	Arrow arum	0	0	0	0	0	0	0	0			
39	Cattail	0	2	5	0	0	20	200	0	220	71	3.10
40	Bulrush	2	13	13	3	2	130	520	240	892	/1	12.56
41	Iris	0	0	0	0	0	0	0	0			
42	Swamp loosestrife	0	0	0	0	0	0	0	0			
43	Purple loosestrife	8	5	1	0	8	50	40	0	98	/1	1.38
44	Priragmites	0	0	0	0	0	0	0	0			
45	Frogoit Clander enilierte					0	0		0			
46	Siender spikerusn					0	0					
4/	Siliai (Weed					0						
40	American lotus					0						
49	Americaniolus	0	0			0	0					
50		0	0	0	0		0	0	0			
	Total cumulative cove	er										120.46

Lake Plant Coverage

This graph represents the cumulative percent of coverage of all submerged aquatic plants. Overall, plant coverage on Loon Lake is good. It is normal to see variation from year to year and tracking these plant trends can assist in short and long term management decisions and evaluation.

Utilizing GPS in Aquatics

The use of GPS can greatly improve communication and accuracy of treatments

- Pre-treatment surveys downloaded directly to applicator hand held/boat GPS unit.
- Applicator tracking of application.
- Post-treatment surveys to ensuring treatment target area has been controlled.

Loon Lake

- PA 451 Lake Improvement Board (LIB)
 - Set up at the county level to support lake management efforts allowing two main goals: financial support from entire district(lake). Lake wide program/district support
 - If your board wasn't in place, your lake would not be managed as one entity, so it is VERY important that we all work together to maintain protection of Loon Lake!
 - Lakes should be managed as one entity, with the entire waterbody being the focus.
 - LIB's are comprised of County Drain Commissioner, County Commissioner, Township Reps, and Lakefront Reps.

Permitting

Standard Permits

- Permit applications submitted to EGLE
- DNR fisheries has a period for input prior to issuance
- Only residential areas are permitted for Algae or Native weed control
- Littoral zone permitted for invasive treatment
- Copper Sulfate not allowed in May/June
- 25% of littoral zone max for algae treatments
- Off-shore invasive species treatments are only approved prior to June 15th

Special Conditions

- DNR fisheries has a period for input prior to issuance
- Cisco Lake No algae treatments from November 1-June 1
- can limit type of treatment available if threatened/endangered species are present or historically present

Herbicide FAQ

"The aquatic pesticides that are permitted by the <u>ANC Program</u> are registered by the <u>USEPA</u> and <u>MDARD</u>. They also undergo toxicological review by EGLE. If the pesticides are applied according to label instructions and permit requirements, these chemicals should pose no danger to public health. Most products permitted by ANC also pose no danger to the environment when correctly used and while a small subset may have an impact on water quality, these products have additional permit restrictions to minimize their risk to the environment. General product safety information is included on the federal product label. In addition, you may review human and environmental health and safety information on the Safety Data Sheet. This information is usually posted on the manufacturer's website.

EGLE institutes a 24-hour swimming restriction only in the treatment area. This restriction is in place primarily to keep swimmers out of the way of the applicator boat, to minimize disturbance within the treatment area, and to maximize plant uptake of the active ingredient. The only product with a swim restriction on the federal label is 2,4 D ester (Navigate and Aquacide, 24-hour swim restriction). Currently, there are no fish consumption restrictions required by the aquatic pesticide labels of products permitted in Michigan".

RELATIVE TOXICITY OF CHEMICAL SUBSTANCES Acute Oral-Rates LDC/50-mg/kg

Less Toxic			
Fluridone	10,000		
Glyphosate	5,600		
Table Salt	3,000		
Renovate	2.574		
Aspirin	1,000		
2,4-D(DMA)	300-1,000		
Copper Sulfate	300		
Reward	230		
Caffeine	192		
Nicotine	53		
Sodium Cvanide	6.5		

Most Toxic

LD C/50 (lethal dosage/50%) is the amount of active ingredient required to cause the death of one-half of the test population

Herbicide Cont.

- Takes 6-10 years to conduct testing to get approval from EPA
- Re-Review cycle for currently approved products based on recent data
- After EPA certification takes years of toxicology review and testing by EGLE before approval in MI
- Testing includes degradation time in environment, and method of degradation
- Test effects on fish and non-target aquatic organisms
- Inert ingredients tested in addition to active ingredient
- 100-1000x buffer given to potential exposure level for swimming
- Only one product approved for use in MI has swimming restriction on label (Navigate Systemic used for EWM, not used in Loon Lake)

<u>3.8 A Discussion to Address Your Concerns Will Herbicides Hurt Me.pdf</u> (aquatics.org)

History of Loon Lake

- PLM took over management in 2013.
- Original surveys documented CLP, and Native Species
- Overall annual budget was reduced during our management of the lake.
- Extensive water quality testing was performed for years, before reducing the program in 2023 as previous years of data has shown no negative trends
- In 2017 Starry Stonewort was found around the loons nest and was treated.
- Starry continues to come back around the loons nest annually, and has not spread beyond the area of initial introduction.
- Full lake surveys are performed multiple times during the summer to check for new infestations of invasive plants as well as evaluate the native plant community.
- Annual AVAS survey is performed each August to quantify the number and density of plants present around the lake
- Varying products/New product on the market
 - Alternating Active ingredients
 - ProcellarCOR
- Native pondweeds/plant species have been promoted

Loon Lake Budget

Financials

Management Through the Years

Native Plant Species

Native Plant Species

This graph illustrates the Native plant diversity throughout Loon Lake. Plant diversity can vary between years as represented in this graph. Variations can be from weather, surveyor techniques and plant biology (cycles between years). Overall, diversity is good on Loon Lake.

Treatment Maps

- Map until 2019
- Permit price based on # acres allowed for treatment

Treatment Maps

- 2019-Current Treatment map
- Decrease in W/A area
- Native species restricted to 34 Acres-not flexible, residential only
- Exotic species area is flexible
- Exotic area generally not Utilized unless exotic beds found
- Permit price \$875 from 19.9-99.9 acres permitted

Littoral Zone-The margin of a freshwater body, extending out from the shore to the limit of attached or rooted plants, where light can penetrate to the bottom.

Water Quality Program

- Lake is tested 3 times a summer
- Spring
 - Nutrients (surface), DO, Temp, ALK, pH, TDS, Clarity, Conductivity
- Summer
 - Ecoli
- Late summer/Fall
 - Nutrients (surface), DO, Temp, ALK, pH, TDS, Clarity, Conductivity
- Important in making management decisions and understanding the impacts of human interaction on the lake (watershed) and why and how the lake is changing.

Lake 2023 WQ Results

Analytical Results

Parameter	Result	Units	Interpretation
Fecal Bacteria (E. coli		CFU/100 mL	N/A
Conductivity	190	uS/cm	
Total Dissolved Solids	170	mg/L	Low concentration of dissolved salts
рН	8.4	S.U.	Water is slightly alkaline
Alkalinity	127	mg CaCO3/l	_Water is hard
Total Phosphorus	29	ug/L	Moderately phosphorus enriched
Nitrates	230	ug/L	Not nitrogen enriched

Eutrophication

- Lakes naturally progress from oligotrophic to eutrophic, a process called eutrophication.
- Human activities dramatically speed this process by increasing input of nutrients (phosphorus and nitrogen) and sediment
- Prevention is far easier and less expensive than restoring lakes already damaged
 - Monitor phosphorus and nitrogen concentrations
 - Encourage BMP Phosphorus free fertilizer, buffers, soil erosion, leaves, debris out of lake
 - Evaluate sources entering lake (Watershed study)

Minimizing Nutrient Input

- Do not feed the ducks and geese. Remove dog, geese and duck droppings from lawns, docks, etc. Excess feces will increase nutrients within the lake. Please, do not sweep it into the lake!
- Create a natural buffer close to the water's edge and remove grass/turf touching the water's edge. A natural setting will filter excess nutrients from entering the water and help decrease erosion. The greenbelt should consist of native plant varieties of shrubs, flowers or trees that do not shed their foliage into the water. Natural buffers are also an excellent way to deter geese from making a stop on your beach front. Geese do not like areas where they cannot see the predators coming towards them.
- If you do fertilize make sure you are using. **Phosphorus free fertilizer!** Talk with your neighbors and develop a Phosphorus Free program which uses no phosphates and slow release nitrogen. One pound of phosphorous may produce over 775 pounds of algae-"The slimy green stuff". If you must fertilize, apply nitrogen fertilizer when the grass is actively growing to minimize loss of nutrients to nearby waters. Begin fertilizing in the spring when temperatures are warm and discontinue before the grass ceases to grow in the fall. Avoid application of fertilizer prior to rainy days.
- Perforate lawn periodically and seed and mulch exposed soil (to prevent erosion).
- Remove aquatic plants, leaves/branches and other debris that washes up along the lakeshore so less decomposition occurs in or near the lake.
- Always use silt fences when building a new home or doing any yard-work that would cause erosion.
- Keep all burn piles and debris piles away from lake. Do not burn near the water. The ash is concentrated nutrients!
- Encourage the use of stone, brick and similar porous materials when building a landscape to minimize urban water collection.

Trophic Status

- Trophic status is a measure of nutrient richness and productivity. Lakes with different trophic categories also differ n a variety of characteristics important to lake users.
 Common categories include: Oligotrophic, Mesotrophic, Eutrophic and Hypereurotrophic
- Loon Lake is Oligotrophic/Mesotrphoic

Characteristics Typical of Different Trophic States

	Oligotrophic	Mesotrophic	Eutrophic	Hypereutrophic
Water Clarity	excellent	Good	fair-poor	very poor
Nutrients	low	Moderate	high	very high
Algae	few	Moderate	blooms likely	severe blooms probable
Plants	few	Moderate	abundant	few, in shallows
Fishery	cold water possible	cold water possible	warm water only	rough fish often dominate

Total Phosphorus

This graph shows how Total Phosphorus can fluctuate depending on year. Low nutrient levels is an excellent sign in the overall health of the lake ecosystem. Lake levels were elevated from previous years in 2022. One test is not cause for concern, but is something to keep an eye on for 2024 and beyond.

Loon Lake Management 2024

- Routine Pre/Post surveys of the lake
- Treatment of non native species
- Annual AVAS Survey
- Water Quality monitoring
- All management efforts are evaluated and considered in both a short and long term strategy for managing your waterbody.

Tentative schedule (2024 Plan of Action)

The tentative schedule is provided to give an idea of what MAY happen on the lake throughout the season. It is NOT a confirmation of all services, specific times, or activities. Many factors can impact the schedule from permitting to weather, from equipment to weed growth.

April: Water Quality June 3: Survey, Weed & Algae Treatment June 24: Survey, Weed & Algae Treatment, WQ July 15: Survey, Weed & Algae Treatment

August 12: Survey, Weed & Algae Treatment September 9: AVAS Survey, Water Quality

If you live on a lake, you must own a rake!

- Regardless of management efforts it is the riparian's responsibility to clean shoreline of floating leaves and debris!
 - Reduces muck and improves the quality of your shoreline.
- Knowing the species is important.
 - Fragmentation!
 - New introductions!

STOP AQUATIC HITCHHIKERS!

Prevent the transport of nuisance species. Clean all recreational equipment. www.ProtectYourWaters.net

- Know your environment, what is around you
- Ask questions

- Communicate Prevention is Mey 800-382-4434 e Early detection, rapid response response
- We can all do our part!
- Let's work together to protect your Lake!

THANK YOU, QUESTIONS!!!

HELP

STOP

AQUATIC

- species on public roads
- Launch a watercraft or place a trailer in the water if it has aquatic plants, zebra mussels or other prohibited species attached
- Transport water from infested waters

Michigan Department of Natural Resources